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Abstract

This paper firstly conducts a systematic three-dimensional investigation of the problem of a rigid smooth punch
bonded to a transversely isotropic piezoelectric half-space. The potential theory method is employed and generalized
to take into account the effect of the electric field. In contrast to pure elasticity, two potentials are introduced. For
an arbitrarily shaped punch, two governing equations are derived, which can be solved using numerical methods.
Particularly, a closed-form, exact solution is obtained for a flat centrally loaded circular punch which is maintained
at a constant electric potential. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In view of the particular coupling effect, piezoelectric materials have gained a lot of interest from
researchers of mechanics. Many theoretical works have been published in the past several decades and
some recent developments can be found in Ding et al. (1996, 1997a, b), Sosa and Khutoryansky (1996),
Kogan et al. (1996), Huang (1997) and Heyliger (1997), to name a few.

Microhardness testing has been developed as an effective technique to assess mechanical properties of
brittle materials such as ceramics, and it allows the introduction of controlled flaws or cracks for
strength and fracture toughness evaluation (Lawn and Wilshaw, 1975). Little effort has been made to
analyze the contact problems of punches or indenters pressed to piezoelectric materials, which are
obviously associated with the above mentioned technology. To the author’s knowledge, only Fan et al.
(1996) recently considered the two-dimensional contact problem of a piezoelectric half-plane: the non-
slip and slip indentor contacts on the half-plane were formulated by the means of Stroh’s formalism.

This paper intends to analyze the punch problem of a transversely isotropic piezoelectric half-space
completely based on three-dimensional piezoelasticity. To this end, the potential theory method, which
has been rigorously developed by Fabrikant (1989) to analyze various mixed boundary value problems
in pure elasticity, is employed. The great advantage of this method is that complete and closed-form
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solutions to some classical elastic problems can be derived. This is also the case in piezoelasticity as will
be illustrated in the paper by considering a circular punch indenting a piezoelectric half-space.

2. Basic formulations

In Cartesian coordinates (with the z-axis being normal to the plane of isotropy), the linear constitutive
relations of a transversely isotropic piezoelectric medium (class 6 mm) are (Tiersten, 1969):
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where, ® and D; are the electric potential and electric displacement vector, respectively; c;;, &; and e; are
the elastic, dielectric, and piezoelectric constants, respectively. The conventional notations of stresses and
displacements have been employed in eqn (1). It is also noted that there are only five independent elastic
constants for transversely isotropic materials, i.e. ¢ = ¢ + 2¢¢6- The governing equations can be
found, for example, in Ding et al. (1996). By introducing the tangential complex displacement
U = u + iv, these equations can be rewritten in a complex manner as follows,
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where, A = 8%/3x> + 8%/3y>, A = 3/0x +19/dy, and the overbar indicates the complex conjugate value.
The general solution to eqn (2) obtained by Ding et al. (1997a) is rewritten in the following form:
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and z; = s;z, sf‘ = cg6/c44, and sf(i =1, 2, 3) are roots of the following algebraic equation:
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where,
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It is noted here that the general solution given in eqn (3) is only valid for distinct s?, while different
forms should be adopted for other cases, see Appendix A.
Moreover, Fj(z) satisfies the following quasi harmonic equations, respectively,
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9z;
From eqns (1) and (3), the following expressions for stresses and electric displacements are derived:
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where, o) = 0, + 0,, 0y = 6 — 0, + 2ityy, 7. = T + i1y, and D = D, +iD,, and,
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3. The potential theory method

It is firstly considered that a smooth rigid punch with arbitrary end shape S is pressed against a
transversely isotropic piezoelectric half-space z>=0 by a normal force P. The problem can be solved as
follows: find the solution to the set of differential equations, eqn (2), for a half-space z>0, subject to the
mixed boundary conditions on the plane z = 0O:

w=uw(xy0), ®=¢xy0), for (x,y)esS;
o:=D.=0, for (x,y)¢S;

7. =0, for —o0<(x,y)<00 9)

As usual (Fan et al., 1996), the displacement and electric potential are prescribed in the contact region
as w and ¢, respectively. For the sake of practical convenience, the punch can be grounded and the
electric potential will be zero. These conditions can be satisfied by a representation in terms of two
harmonic functions G and H, i.e.

Fi(z) = ¢iG(zi)) + diH(z;), (i=1,2,3); Fy(z)=0 (10)
where, to satisfy the third condition in eqn (9), one may set
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and the two functions G and H are given as:

G(p, ¢, z) = ” In[R(M, N) +z]oo(N) dS, H(p, ¢, z) = ” In [R(M, N) + z]Do(N) dS, (12)
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where oo(N) and Dy(N) stand for values of ¢, and D, at point N(r, , 0) respectively, R(M, N) is the
distance between the points M(p, ¢, z) and N(r, s, 0), and the integration is taken over the contact
region S. Hereafter, the cylindrical coordinates (p, ¢,z) are alternatively used for the sake of
convenience. In contrast to pure elasticity, here a new potential H has been introduced to include the
effect of electric field in piezoelectric materials. Making use of the property of the potential of a simple
layer, it is known that the second condition in eqn (9) is already identically satisfied while inside the
contact region S, one has
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The following relations then can be obtained from eqns (7), (10) and (13):
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Since cqa(s; + 1) + e1san = y4;5, one can solve ¢; and d; from eqns (11) and (14) as follows:
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Combining eqns (3) and (10) with eqn (12), the expressions of displacements and electric potential can
be derived. Taking consideration of the first condition in eqn (9), the following integral equations are
obtained:
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where, as above, R(Ny, N) represents the distance between two points Ny and N, and both Ny, N € S.
The constants g;, (i = 1, 2, 3, 4) are defined as follows:
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From eqn (16), it is obtained that
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where A = g1g24 — g2g3. Thus, for the contact problem of arbitrary end shaped punch, two identical form
integral equations have been set up, which can be solved using general numerical methods. However, for
a circular punch, an explicit solution can be obtained by using the results of Fabrikant (1989).
Moreover, for a flat circular punch maintained at a constant electric potential and loaded centrally by a
concentrated force, a closed-form exact solution, which is expressed by elementary functions, can be
obtained. This will be shown in the next section.

4. The circular punch

In the case that the punch is circular, by utilizing the results presented in Fabrikant (1989), the
following expressions can be similarly obtained:
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where a is the radius of the punch and,
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Integrating eqn (20) gives
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where the function K reads
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where { = e @ %)p/p,. Some derivatives of the function K (Green’s functions related to elastoelectric
field of displacements, stresses, electric displacements and electric potential) can be obtained in terms of
elementary functions from eqn (23) by differentiation; these have been calculated by Fabrikant (1989)
and are listed in Appendix B.

Now it is further assumed that the circular punch is flat ended, maintained at a constant electric
potential and loaded centrally by a concentrated force. Under this consideration, it is known that both
the electric potential ¢ and the punch settlement w are constant inside the contact region. In this
particular case, the following solutions to eqns (18) and (19) are obtained:
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where fi; = gaw — g2 and B, = g1 — g3 are also constants. Substituting eqn (24) into eqn (12) gives
the expressions for G and H as follows, respectively,

Glp, b, z) = i—'[;l{z sin~! <%) — (@ =2 +am [12 +(B- p2)l/2] } (25)
H(p, ¢,z) = %{z sin”! (%) — (a2 — l%)]/z—}-a In [12 + (l% — pz)l/z] } (26)

where b = H[(p +a)* + 22]'"? + [(p — a)* + z2]'/?). Substitution from eqns (25) and (26) into eqn (10)
and these in turn into eqn (7) give rise to the expressions for all elastoelectric field variables which are
obviously expressed in terms of elementary functions. The expressions for ¢, and D, are given in the
following as examples,
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where 11o; = H(p +a)* + 221> F[(p — a)* + z2]'/%}. It is interesting now to give the stress and electric
displacement intensity factors at the edge of the punch, ie. at z=0 and p = a. Define the stress
intensity factor and electric displacement intensity factor, respectively, as follows

ke = 1m {@=p)Poulsg} ko= im{(@=p)"2D.l ). (28)

Noticing eqn (14), eqns (27) and (28) yield
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Now integrating the first equation in eqn (24) over the contact region gives the relation between the
applied concentrated force P and the surface displacement w as well as the electric potential ¢,
2p,a
pP=—— 30
A (30)
Similarly, if we define the concentrated electric charge as Q, then integrating the second equation in eqn
(24) gives,

020 o

Substitution of eqns (30) and (31) into eqn (29) yields,

P Q

e kp=—2
(2a)** P n(2a)*? (2

It is seen that the stress intensity factor has identically the same form as that for pure elasticity (the
corresponding expression given in Fabrikant (1989) contains obvious printing errors). In other words,
the coupling effect of piezoelectric material has no effect on the stress intensity factor. As regards to the
electric displacement intensity factor, the similar conclusion can be reached.

5. Conclusion

The potential theory method has been generalized in the paper to analyze the piezoelastic contact
problem of a punch pressed against a piezoelectric half-space. A new potential is introduced to take
account of the effect of electric field. For the particular case that a flat centrally loaded circular punch is
simultaneously maintained at a constant electric potential, an exact solution that is expressed in terms of
elementary functions is then obtained. The corresponding stress and electric displacement intensity
factors are defined in a usual manner and expressions of simple form are obtained. It is found that the
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stress intensity factor is independent of the material constants and is identically the same as that for
pure elasticity.

It is worth mentioning here again that the general solution will take other forms for equal eigenvalue
cases (Ding et al., 1997a). The succeeding derivations are similar to what has been described, see
Appendix A. However, as pointed out by Fabrikant (1989), one can also derive the corresponding
results of equal eigenvalues directly from the ones of distinct eigenvalues, but utilizing the well-known
L’Hospital rule.

In analogy with pure elasticity, further developments can be expected by utilizing the present method
along with the delicate results of Fabrikant (1989).

Acknowledgements

The financial support from the Japanese Ministry of Culture, Education and Science is acknowledged.
The work was also supported by the Natural Science Foundation of China (No. 19872060) and partly
by the Zhejiang Provincial Natural Science Foundation. The author is particularly indebted to Professor
Tadashi Shioya for his kindness.

Appendix A

The general solutions for the cases of multiple roots of s; (i =1, 2, 3) are also expressed in terms of
quasi harmonic functions F; (i = 1, 2, 3, 4)that satisfy eqn (6) (Ding et al., 1997a). They can be rewritten
in the following complex forms:
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where G;, H; (i = 1, 2) have been shown in eqns (A4) and (AS5). The followed derivatives are omitted for
the sake of simplicity. It is just mentioned here that, for both cases, the resulting integral equations have
the same structure as eqn (16) except for the involved constants. Therefore, previous results in potential

theory can be also used to obtain the corresponding solutions.

Appendix B

The following derivatives of the function K can be found in Fabrikant (1989):
ok _ 2 1 R + tan~! i
dz o Rg h R() ’

q o h 22 1 _ (az—lz)l/2
AK = R tan 1(R_> " hGR: 1/2- (7 iz tan l ——11/2 ’
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where g = pe'® — pel.
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