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Abstract

This paper ®rstly conducts a systematic three-dimensional investigation of the problem of a rigid smooth punch
bonded to a transversely isotropic piezoelectric half-space. The potential theory method is employed and generalized

to take into account the e�ect of the electric ®eld. In contrast to pure elasticity, two potentials are introduced. For
an arbitrarily shaped punch, two governing equations are derived, which can be solved using numerical methods.
Particularly, a closed-form, exact solution is obtained for a ¯at centrally loaded circular punch which is maintained
at a constant electric potential. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In view of the particular coupling e�ect, piezoelectric materials have gained a lot of interest from
researchers of mechanics. Many theoretical works have been published in the past several decades and
some recent developments can be found in Ding et al. (1996, 1997a, b), Sosa and Khutoryansky (1996),
Kogan et al. (1996), Huang (1997) and Heyliger (1997), to name a few.

Microhardness testing has been developed as an e�ective technique to assess mechanical properties of
brittle materials such as ceramics, and it allows the introduction of controlled ¯aws or cracks for
strength and fracture toughness evaluation (Lawn and Wilshaw, 1975). Little e�ort has been made to
analyze the contact problems of punches or indenters pressed to piezoelectric materials, which are
obviously associated with the above mentioned technology. To the author's knowledge, only Fan et al.
(1996) recently considered the two-dimensional contact problem of a piezoelectric half-plane: the non-
slip and slip indentor contacts on the half-plane were formulated by the means of Stroh's formalism.

This paper intends to analyze the punch problem of a transversely isotropic piezoelectric half-space
completely based on three-dimensional piezoelasticity. To this end, the potential theory method, which
has been rigorously developed by Fabrikant (1989) to analyze various mixed boundary value problems
in pure elasticity, is employed. The great advantage of this method is that complete and closed-form
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solutions to some classical elastic problems can be derived. This is also the case in piezoelasticity as will
be illustrated in the paper by considering a circular punch indenting a piezoelectric half-space.

2. Basic formulations

In Cartesian coordinates (with the z-axis being normal to the plane of isotropy), the linear constitutive
relations of a transversely isotropic piezoelectric medium (class 6 mm) are (Tiersten, 1969):
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where, F and Di are the electric potential and electric displacement vector, respectively; cij, eij and eij are
the elastic, dielectric, and piezoelectric constants, respectively. The conventional notations of stresses and
displacements have been employed in eqn (1). It is also noted that there are only ®ve independent elastic
constants for transversely isotropic materials, i.e. c11 � c12 � 2c66. The governing equations can be
found, for example, in Ding et al. (1996). By introducing the tangential complex displacement
U � u� iv, these equations can be rewritten in a complex manner as follows,
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where, D � @2=@x2 � @ 2=@y2, L � @=@x� i@=@y, and the overbar indicates the complex conjugate value.
The general solution to eqn (2) obtained by Ding et al. (1997a) is rewritten in the following form:
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where
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It is noted here that the general solution given in eqn (3) is only valid for distinct s2i , while di�erent
forms should be adopted for other cases, see Appendix A.

Moreover, Fi�z� satis®es the following quasi harmonic equations, respectively, 
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From eqns (1) and (3), the following expressions for stresses and electric displacements are derived:
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where, s1 � sx � sy, s2 � sx ÿ sy � 2itxy, tz � txz � ityz and D � Dx � iDy, and,

g1i � ÿc13 � c33siai1 � e33siai2, g2i � ÿe31 � e33siai1 ÿ e33siai2: �8�
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3. The potential theory method

It is ®rstly considered that a smooth rigid punch with arbitrary end shape S is pressed against a
transversely isotropic piezoelectric half-space ze0 by a normal force P. The problem can be solved as
follows: ®nd the solution to the set of di�erential equations, eqn (2), for a half-space ze0, subject to the
mixed boundary conditions on the plane z � 0:

w � o �x, y, 0�, F � j�x, y, 0�, for �x, y� 2 S;

sz � Dz � 0, for �x, y� =2 S;

tz � 0, for ÿ1 < �x, y� <1 �9�

As usual (Fan et al., 1996), the displacement and electric potential are prescribed in the contact region
as o and j, respectively. For the sake of practical convenience, the punch can be grounded and the
electric potential will be zero. These conditions can be satis®ed by a representation in terms of two
harmonic functions G and H, i.e.
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and the two functions G and H are given as:
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where s0�N � and D0�N � stand for values of sz and Dz at point N�r, c, 0� respectively, R�M, N � is the
distance between the points M�r, f, z� and N�r, c, 0�, and the integration is taken over the contact
region S. Hereafter, the cylindrical coordinates �r, f, z� are alternatively used for the sake of
convenience. In contrast to pure elasticity, here a new potential H has been introduced to include the
e�ect of electric ®eld in piezoelectric materials. Making use of the property of the potential of a simple
layer, it is known that the second condition in eqn (9) is already identically satis®ed while inside the
contact region S, one has
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The following relations then can be obtained from eqns (7), (10) and (13):
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Since c44�si � ai1� � e15ai2 � g1isi, one can solve ci and di from eqns (11) and (14) as follows:
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Combining eqns (3) and (10) with eqn (12), the expressions of displacements and electric potential can
be derived. Taking consideration of the ®rst condition in eqn (9), the following integral equations are
obtained:
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where, as above, R�N0, N � represents the distance between two points N0 and N, and both N0, N 2 S.
The constants gi, �i � 1, 2, 3, 4� are de®ned as follows:
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From eqn (16), it is obtained that

g4o �N0� ÿ g2j�N0 � � A

� �
s

s0�N�
R�N0, N� dS, �18�

g1j�N0� ÿ g3o �N0 � � A

� �
s

D0�N�
R�N0, N� dS, �19�

where A � g1g4 ÿ g2g3. Thus, for the contact problem of arbitrary end shaped punch, two identical form
integral equations have been set up, which can be solved using general numerical methods. However, for
a circular punch, an explicit solution can be obtained by using the results of Fabrikant (1989).
Moreover, for a ¯at circular punch maintained at a constant electric potential and loaded centrally by a
concentrated force, a closed-form exact solution, which is expressed by elementary functions, can be
obtained. This will be shown in the next section.

4. The circular punch

In the case that the punch is circular, by utilizing the results presented in Fabrikant (1989), the
following expressions can be similarly obtained:
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where a is the radius of the punch and,
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where z � ei�fÿf0�r=r0. Some derivatives of the function K (Green's functions related to elastoelectric
®eld of displacements, stresses, electric displacements and electric potential) can be obtained in terms of
elementary functions from eqn (23) by di�erentiation; these have been calculated by Fabrikant (1989)
and are listed in Appendix B.

Now it is further assumed that the circular punch is ¯at ended, maintained at a constant electric
potential and loaded centrally by a concentrated force. Under this consideration, it is known that both
the electric potential j and the punch settlement o are constant inside the contact region. In this
particular case, the following solutions to eqns (18) and (19) are obtained:
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where b1 � g4o ÿ g2j and b2 � g1jÿ g3o are also constants. Substituting eqn (24) into eqn (12) gives
the expressions for G and H as follows, respectively,
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where l2 � 1
2f��r� a�2 � z2�1=2 � ��rÿ a�2 � z2�1=2g. Substitution from eqns (25) and (26) into eqn (10)

and these in turn into eqn (7) give rise to the expressions for all elastoelectric ®eld variables which are
obviously expressed in terms of elementary functions. The expressions for sz and Dz are given in the
following as examples,
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where l1;2i � 1
2f��r� a�2 � z2i �1=23��rÿ a�2 � z2i �1=2g. It is interesting now to give the stress and electric

displacement intensity factors at the edge of the punch, i.e. at z � 0 and r � a. De®ne the stress
intensity factor and electric displacement intensity factor, respectively, as follows
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Now integrating the ®rst equation in eqn (24) over the contact region gives the relation between the
applied concentrated force P and the surface displacement o as well as the electric potential j,
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Similarly, if we de®ne the concentrated electric charge as Q, then integrating the second equation in eqn
(24) gives,
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Substitution of eqns (30) and (31) into eqn (29) yields,
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It is seen that the stress intensity factor has identically the same form as that for pure elasticity (the
corresponding expression given in Fabrikant (1989) contains obvious printing errors). In other words,
the coupling e�ect of piezoelectric material has no e�ect on the stress intensity factor. As regards to the
electric displacement intensity factor, the similar conclusion can be reached.

5. Conclusion

The potential theory method has been generalized in the paper to analyze the piezoelastic contact
problem of a punch pressed against a piezoelectric half-space. A new potential is introduced to take
account of the e�ect of electric ®eld. For the particular case that a ¯at centrally loaded circular punch is
simultaneously maintained at a constant electric potential, an exact solution that is expressed in terms of
elementary functions is then obtained. The corresponding stress and electric displacement intensity
factors are de®ned in a usual manner and expressions of simple form are obtained. It is found that the

W.-Q. Chen / International Journal of Solids and Structures 37 (2000) 2331±2340 2337



stress intensity factor is independent of the material constants and is identically the same as that for
pure elasticity.

It is worth mentioning here again that the general solution will take other forms for equal eigenvalue
cases (Ding et al., 1997a). The succeeding derivations are similar to what has been described, see
Appendix A. However, as pointed out by Fabrikant (1989), one can also derive the corresponding
results of equal eigenvalues directly from the ones of distinct eigenvalues, but utilizing the well-known
L'Hospital rule.

In analogy with pure elasticity, further developments can be expected by utilizing the present method
along with the delicate results of Fabrikant (1989).
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Appendix A

The general solutions for the cases of multiple roots of si �i � 1, 2, 3� are also expressed in terms of
quasi harmonic functions Fi �i � 1, 2, 3, 4�that satisfy eqn (6) (Ding et al., 1997a). They can be rewritten
in the following complex forms:
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For Case (1), we assume
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For Case (2), we assume
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where Gi,Hi �i � 1, 2� have been shown in eqns (A4) and (A5). The followed derivatives are omitted for
the sake of simplicity. It is just mentioned here that, for both cases, the resulting integral equations have
the same structure as eqn (16) except for the involved constants. Therefore, previous results in potential
theory can be also used to obtain the corresponding solutions.

Appendix B

The following derivatives of the function K can be found in Fabrikant (1989):

@K

@z
� z

R3
0

�
R0

h
� tanÿ1

�
h

R0

��
, �B1�

LK � q

R3
0

tanÿ1
�

h

R0

�
ÿ z2

h �qR2
0

ÿ 1ÿ
a2 ÿ r20

�1=2
�q
ÿ
�z ÿ 1

�1=2 tanÿ1

24ÿa2 ÿ l21
�1=2

a
ÿ
�z ÿ 1

�1=2
35, �B2�
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ÿ
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0
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2
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�
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R2
0
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a2 ÿ r20

�1=2
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�q2
ÿ
�z ÿ 1

�1=2 tanÿ1
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�1=2

a
ÿ
�z ÿ 1

�1=2
35� a

ÿ
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�q2
�
a2 �z ÿ l21

� ÿ a
ÿ
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�1=2
r2e2if

l21
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�
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where q � reif ÿ r0eif0 .
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